Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative study of nutritional mode and mycorrhizal fungi in green and albino variants of Goodyera velutina, an orchid mainly utilizing saprotrophic rhizoctonia.

Identifieur interne : 000611 ( Main/Exploration ); précédent : 000610; suivant : 000612

Comparative study of nutritional mode and mycorrhizal fungi in green and albino variants of Goodyera velutina, an orchid mainly utilizing saprotrophic rhizoctonia.

Auteurs : Kenji Suetsugu [Japon] ; Masahide Yamato [Japon] ; Jun Matsubayashi [Japon] ; Ichiro Tayasu [Japon]

Source :

RBID : pubmed:31448451

Descripteurs français

English descriptors

Abstract

The majority of chlorophyllous orchids form mycorrhizal associations with so-called rhizoctonia fungi, a phylogenetically heterogeneous assemblage of predominantly saprotrophic fungi in Ceratobasidiaceae, Tulasnellaceae, and Serendipitaceae. It is still a matter of debate whether adult orchids mainly associated with rhizoctonia species are partially mycoheterotrophic. Here, we investigated the nutritional modes of green and albino variants of Goodyera velutina, an orchid species considered to be mainly associated with Ceratobasidium spp., by measuring their 13 C and 15 N abundances, and by molecular barcoding of their mycorrhizal fungi. Molecular analysis revealed that both green and albino variants of G. velutina harbored a similar range of mycobionts, mainly saprotrophic Ceratobasidium spp., Tulasnella spp., and ectomycorrhizal Russula spp. In addition, stable isotope analysis revealed that albino variants were significantly enriched in 13 C but not so greatly in 15 N, suggesting that saprotrophic Ceratobasidium spp. and Tulasnella spp. are their main carbon source. However, in green variants, 13 C levels were depleted and those of 15 N were indistinguishable from the co-occurring autotrophic plants. Therefore, we concluded that the albino G. velutina variants are fully mycoheterotrophic plants whose C derives mainly from saprotrophic rhizoctonia, while the green G. velutina variants are mainly autotrophic plants, at least at our study site, in spite of their additional associations with ectomycorrhizal fungi. This is the first report demonstrating that adult nonphotosynthetic albino variants can obtain their nutrition mainly from nonectomycorrhizal rhizoctonia.

DOI: 10.1111/mec.15213
PubMed: 31448451


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative study of nutritional mode and mycorrhizal fungi in green and albino variants of Goodyera velutina, an orchid mainly utilizing saprotrophic rhizoctonia.</title>
<author>
<name sortKey="Suetsugu, Kenji" sort="Suetsugu, Kenji" uniqKey="Suetsugu K" first="Kenji" last="Suetsugu">Kenji Suetsugu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biology, Graduate School of Science, Kobe University, Kobe</wicri:regionArea>
<wicri:noRegion>Kobe</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yamato, Masahide" sort="Yamato, Masahide" uniqKey="Yamato M" first="Masahide" last="Yamato">Masahide Yamato</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Education, Chiba University, Chiba, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Education, Chiba University, Chiba</wicri:regionArea>
<wicri:noRegion>Chiba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matsubayashi, Jun" sort="Matsubayashi, Jun" uniqKey="Matsubayashi J" first="Jun" last="Matsubayashi">Jun Matsubayashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka</wicri:regionArea>
<wicri:noRegion>Yokosuka</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tayasu, Ichiro" sort="Tayasu, Ichiro" uniqKey="Tayasu I" first="Ichiro" last="Tayasu">Ichiro Tayasu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Institute for Humanity and Nature, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Research Institute for Humanity and Nature, Kyoto</wicri:regionArea>
<wicri:noRegion>Kyoto</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31448451</idno>
<idno type="pmid">31448451</idno>
<idno type="doi">10.1111/mec.15213</idno>
<idno type="wicri:Area/Main/Corpus">000337</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000337</idno>
<idno type="wicri:Area/Main/Curation">000337</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000337</idno>
<idno type="wicri:Area/Main/Exploration">000337</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative study of nutritional mode and mycorrhizal fungi in green and albino variants of Goodyera velutina, an orchid mainly utilizing saprotrophic rhizoctonia.</title>
<author>
<name sortKey="Suetsugu, Kenji" sort="Suetsugu, Kenji" uniqKey="Suetsugu K" first="Kenji" last="Suetsugu">Kenji Suetsugu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biology, Graduate School of Science, Kobe University, Kobe</wicri:regionArea>
<wicri:noRegion>Kobe</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yamato, Masahide" sort="Yamato, Masahide" uniqKey="Yamato M" first="Masahide" last="Yamato">Masahide Yamato</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Education, Chiba University, Chiba, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Education, Chiba University, Chiba</wicri:regionArea>
<wicri:noRegion>Chiba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matsubayashi, Jun" sort="Matsubayashi, Jun" uniqKey="Matsubayashi J" first="Jun" last="Matsubayashi">Jun Matsubayashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka</wicri:regionArea>
<wicri:noRegion>Yokosuka</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tayasu, Ichiro" sort="Tayasu, Ichiro" uniqKey="Tayasu I" first="Ichiro" last="Tayasu">Ichiro Tayasu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Institute for Humanity and Nature, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Research Institute for Humanity and Nature, Kyoto</wicri:regionArea>
<wicri:noRegion>Kyoto</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular ecology</title>
<idno type="eISSN">1365-294X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon Isotopes (MeSH)</term>
<term>DNA, Ribosomal Spacer (genetics)</term>
<term>Isotope Labeling (MeSH)</term>
<term>Likelihood Functions (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen Isotopes (MeSH)</term>
<term>Nutritional Physiological Phenomena (MeSH)</term>
<term>Orchidaceae (microbiology)</term>
<term>Phylogeny (MeSH)</term>
<term>Rhizoctonia (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Espaceur de l'ADN ribosomique (génétique)</term>
<term>Fonctions de vraisemblance (MeSH)</term>
<term>Isotopes de l'azote (MeSH)</term>
<term>Isotopes du carbone (MeSH)</term>
<term>Marquage isotopique (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Orchidaceae (microbiologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénomènes physiologiques nutritionnels (MeSH)</term>
<term>Rhizoctonia (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Ribosomal Spacer</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon Isotopes</term>
<term>Nitrogen Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Espaceur de l'ADN ribosomique</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Orchidaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Orchidaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
<term>Rhizoctonia</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Rhizoctonia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Isotope Labeling</term>
<term>Likelihood Functions</term>
<term>Nutritional Physiological Phenomena</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Fonctions de vraisemblance</term>
<term>Isotopes de l'azote</term>
<term>Isotopes du carbone</term>
<term>Marquage isotopique</term>
<term>Phylogenèse</term>
<term>Phénomènes physiologiques nutritionnels</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The majority of chlorophyllous orchids form mycorrhizal associations with so-called rhizoctonia fungi, a phylogenetically heterogeneous assemblage of predominantly saprotrophic fungi in Ceratobasidiaceae, Tulasnellaceae, and Serendipitaceae. It is still a matter of debate whether adult orchids mainly associated with rhizoctonia species are partially mycoheterotrophic. Here, we investigated the nutritional modes of green and albino variants of Goodyera velutina, an orchid species considered to be mainly associated with Ceratobasidium spp., by measuring their
<sup>13</sup>
C and
<sup>15</sup>
N abundances, and by molecular barcoding of their mycorrhizal fungi. Molecular analysis revealed that both green and albino variants of G. velutina harbored a similar range of mycobionts, mainly saprotrophic Ceratobasidium spp., Tulasnella spp., and ectomycorrhizal Russula spp. In addition, stable isotope analysis revealed that albino variants were significantly enriched in
<sup>13</sup>
C but not so greatly in
<sup>15</sup>
N, suggesting that saprotrophic Ceratobasidium spp. and Tulasnella spp. are their main carbon source. However, in green variants,
<sup>13</sup>
C levels were depleted and those of
<sup>15</sup>
N were indistinguishable from the co-occurring autotrophic plants. Therefore, we concluded that the albino G. velutina variants are fully mycoheterotrophic plants whose C derives mainly from saprotrophic rhizoctonia, while the green G. velutina variants are mainly autotrophic plants, at least at our study site, in spite of their additional associations with ectomycorrhizal fungi. This is the first report demonstrating that adult nonphotosynthetic albino variants can obtain their nutrition mainly from nonectomycorrhizal rhizoctonia.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31448451</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-294X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Molecular ecology</Title>
<ISOAbbreviation>Mol Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative study of nutritional mode and mycorrhizal fungi in green and albino variants of Goodyera velutina, an orchid mainly utilizing saprotrophic rhizoctonia.</ArticleTitle>
<Pagination>
<MedlinePgn>4290-4299</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mec.15213</ELocationID>
<Abstract>
<AbstractText>The majority of chlorophyllous orchids form mycorrhizal associations with so-called rhizoctonia fungi, a phylogenetically heterogeneous assemblage of predominantly saprotrophic fungi in Ceratobasidiaceae, Tulasnellaceae, and Serendipitaceae. It is still a matter of debate whether adult orchids mainly associated with rhizoctonia species are partially mycoheterotrophic. Here, we investigated the nutritional modes of green and albino variants of Goodyera velutina, an orchid species considered to be mainly associated with Ceratobasidium spp., by measuring their
<sup>13</sup>
C and
<sup>15</sup>
N abundances, and by molecular barcoding of their mycorrhizal fungi. Molecular analysis revealed that both green and albino variants of G. velutina harbored a similar range of mycobionts, mainly saprotrophic Ceratobasidium spp., Tulasnella spp., and ectomycorrhizal Russula spp. In addition, stable isotope analysis revealed that albino variants were significantly enriched in
<sup>13</sup>
C but not so greatly in
<sup>15</sup>
N, suggesting that saprotrophic Ceratobasidium spp. and Tulasnella spp. are their main carbon source. However, in green variants,
<sup>13</sup>
C levels were depleted and those of
<sup>15</sup>
N were indistinguishable from the co-occurring autotrophic plants. Therefore, we concluded that the albino G. velutina variants are fully mycoheterotrophic plants whose C derives mainly from saprotrophic rhizoctonia, while the green G. velutina variants are mainly autotrophic plants, at least at our study site, in spite of their additional associations with ectomycorrhizal fungi. This is the first report demonstrating that adult nonphotosynthetic albino variants can obtain their nutrition mainly from nonectomycorrhizal rhizoctonia.</AbstractText>
<CopyrightInformation>© 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Suetsugu</LastName>
<ForeName>Kenji</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0002-7943-4164</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yamato</LastName>
<ForeName>Masahide</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Education, Chiba University, Chiba, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsubayashi</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tayasu</LastName>
<ForeName>Ichiro</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Research Institute for Humanity and Nature, Kyoto, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>LC458752</AccessionNumber>
<AccessionNumber>LC458756</AccessionNumber>
<AccessionNumber>DQ200924</AccessionNumber>
<AccessionNumber>LC458758</AccessionNumber>
<AccessionNumber>LC458759</AccessionNumber>
<AccessionNumber>LC459956</AccessionNumber>
<AccessionNumber>LC480733</AccessionNumber>
<AccessionNumber>LC480736</AccessionNumber>
<AccessionNumber>MUV66439</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Ecol</MedlineTA>
<NlmUniqueID>9214478</NlmUniqueID>
<ISSNLinking>0962-1083</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021903">DNA, Ribosomal Spacer</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009587">Nitrogen Isotopes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021903" MajorTopicYN="N">DNA, Ribosomal Spacer</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007553" MajorTopicYN="N">Isotope Labeling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016013" MajorTopicYN="N">Likelihood Functions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009587" MajorTopicYN="N">Nitrogen Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009747" MajorTopicYN="Y">Nutritional Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029595" MajorTopicYN="N">Orchidaceae</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012232" MajorTopicYN="N">Rhizoctonia</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">13C natural abundance</Keyword>
<Keyword MajorTopicYN="Y">15N natural abundance</Keyword>
<Keyword MajorTopicYN="Y">Orchidaceae</Keyword>
<Keyword MajorTopicYN="Y">autotrophy</Keyword>
<Keyword MajorTopicYN="Y">mycoheterotrophy</Keyword>
<Keyword MajorTopicYN="Y">mycorrhiza</Keyword>
<Keyword MajorTopicYN="Y">rhizoctonia</Keyword>
<Keyword MajorTopicYN="Y">vegetative albino</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>07</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31448451</ArticleId>
<ArticleId IdType="doi">10.1111/mec.15213</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389</Citation>
</Reference>
<Reference>
<Citation>Bidartondo, M. I. (2005). The evolutionary ecology of myco-heterotrophy. New Phytologist, 167, 335-352. https://doi.org/10.1111/j.1469-8137.2005.01429.x</Citation>
</Reference>
<Reference>
<Citation>Bidartondo, M. I., Bruns, T. D., Weiss, M., Sergio, C., & Read, D. J. (2003). Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proceedings of the Royal Society of London Series B, 270, 835-842. https://doi.org/10.1098/rspb.2002.2299</Citation>
</Reference>
<Reference>
<Citation>Bidartondo, M. I., Burghardt, B., Gebauer, G., Bruns, T. D., & Read, D. J. (2004). Changing partners in the dark: Isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proceedings of the Royal Society of London Series B-Biological Sciences, 271, 1799-1806. https://doi.org/10.1098/rspb.2004.2807</Citation>
</Reference>
<Reference>
<Citation>Cernusak, L. A., Tcherkez, G., Keitel, C., Cornwell, W. K., Santiago, L. S., Knohl, A., … Wright, I. J. (2009). Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology, 36, 199-213. https://doi.org/10.1071/FP08216</Citation>
</Reference>
<Reference>
<Citation>Coplen, T. B. (2011). Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry, 25, 2538-2560. https://doi.org/10.1002/rcm.5129</Citation>
</Reference>
<Reference>
<Citation>Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x</Citation>
</Reference>
<Reference>
<Citation>Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - Application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x</Citation>
</Reference>
<Reference>
<Citation>Gebauer, G., & Meyer, M. (2003). 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytologist, 160, 209-223. https://doi.org/10.1046/j.1469-8137.2003.00872.x</Citation>
</Reference>
<Reference>
<Citation>Gebauer, G., Preiss, K., & Gebauer, A. C. (2016). Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytologist, 211, 11-15. https://doi.org/10.1111/nph.13865</Citation>
</Reference>
<Reference>
<Citation>Gebauer, G., & Schulze, E. D. (1991). Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia, 87, 198-207. https://doi.org/10.1007/BF00325257</Citation>
</Reference>
<Reference>
<Citation>Gonneau, C., Jersáková, J., de Tredern, E., Till-Bottraud, I., Saarinen, K., Sauve, M., … Selosse, M. A. (2014). Photosynthesis in perennial mixotrophic Epipactis spp. (Orchidaceae) contributes more to shoot and fruit biomass than to hypogeous survival. Journal of Ecology, 102, 1183-1194.</Citation>
</Reference>
<Reference>
<Citation>Halbwachs, H., Dentinger, B. T., Detheridge, A. P., Karasch, P., & Griffith, G. W. (2013). Hyphae of waxcap fungi colonise plant roots. Fungal Ecology, 6, 487-492. https://doi.org/10.1016/j.funeco.2013.08.003</Citation>
</Reference>
<Reference>
<Citation>Hynson, N. A., Madsen, T. P., Selosse, M.-A., Adam, I. K. U., Ogura-Tsujita, Y., Roy, M., & Gebauer, G. (2013). The physiological ecology of mycoheterotrophy. In V. Merckx (Ed.), Mycoheterotrophy: The biology of plants living on fungi (pp. 297-342). New York, NY: Springer.</Citation>
</Reference>
<Reference>
<Citation>Johansson, V. A., Mikusinska, A., Ekblad, A., & Eriksson, O. (2015). Partial mycoheterotrophy in Pyroleae: Nitrogen and carbon stable isotope signatures during development from seedling to adult. Oecologia, 177, 203-211. https://doi.org/10.1007/s00442-014-3137-x</Citation>
</Reference>
<Reference>
<Citation>Julou, T., Burghardt, B., Gebauer, G., Berveiller, D., Damesin, C., & Selosse, M. A. (2005). Mixotrophy in orchids: Insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytologist, 166, 639-653. https://doi.org/10.1111/j.1469-8137.2005.01364.x</Citation>
</Reference>
<Reference>
<Citation>Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874. https://doi.org/10.1093/molbev/msw054</Citation>
</Reference>
<Reference>
<Citation>Lallemand, F., Robionek, A., Courty, P., & Selosse, M. (2018). The 13C content of the orchid Epipactis palustris (L.) Crantz responds to light as in autotrophic plants. Botany Letters, 165, 1-9.</Citation>
</Reference>
<Reference>
<Citation>Lee, Y. I., Yang, C. K., & Gebauer, G. (2015). The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: Novel evidence from sub-tropical Asia. Annals of Botany, 116, 423-435.</Citation>
</Reference>
<Reference>
<Citation>Liebel, H. T., Bidartondo, M. I., Preiss, K., Segreto, R., Stöckel, M., Rodda, M., & Gebauer, G. (2010). C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and Macaronesia. American Journal of Botany, 97, 903-912. https://doi.org/10.3732/ajb.0900354</Citation>
</Reference>
<Reference>
<Citation>Martos, F., Dulormne, M., Pailler, T., Bonfante, P., Faccio, A., Fournel, J., … Selosse, M.-A. (2009). Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytologist, 184, 668-681. https://doi.org/10.1111/j.1469-8137.2009.02987.x</Citation>
</Reference>
<Reference>
<Citation>Merckx, V., & Freudenstein, J. V. (2010). Evolution of mycoheterotrophy in plants: A phylogenetic perspective. New Phytologist, 185, 605-609. https://doi.org/10.1111/j.1469-8137.2009.03155.x</Citation>
</Reference>
<Reference>
<Citation>Ogura-Tsujita, Y., Gebauer, G., Hashimoto, T., Umata, H., & Yukawa, T. (2009). Evidence for novel and specialized mycorrhizal parasitism: The orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proceedings of the Royal Society B-Biological Sciences, 276, 761-767.</Citation>
</Reference>
<Reference>
<Citation>Ogura-Tsujita, Y., Gebauer, G., Xu, H., Fukasawa, Y., Umata, H., Tetsuka, K., … Yukawa, T. (2018). The giant mycoheterotrophic orchid Erythrorchis altissima is associated mainly with a divergent set of wood-decaying fungi. Molecular Ecology, 27, 1324-1337.</Citation>
</Reference>
<Reference>
<Citation>Preiss, K., & Gebauer, G. (2008). A methodological approach to improve estimates of nutrient gains by partially myco-heterotrophic plants. Isotopes in Environmental and Health Studies, 44, 393-401. https://doi.org/10.1080/10256010802507458</Citation>
</Reference>
<Reference>
<Citation>Roy, M., Gonneau, C., Rocheteau, A., Berveiller, D., Thomas, J. C., Damesin, C., & Selosse, M. A. (2013). Why do mixotrophic plants stay green? A comparison between green and achlorophyllous orchid individuals in situ. Ecological Monographs, 83, 95-117. https://doi.org/10.1890/11-2120.1</Citation>
</Reference>
<Reference>
<Citation>Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.</Citation>
</Reference>
<Reference>
<Citation>Schiebold, J. M. I., Bidartondo, M. I., Lenhard, F., Makiola, A., & Gebauer, G. (2018). Exploiting mycorrhizas in broad daylight: Partial mycoheterotrophy is a common nutritional strategy in meadow orchids. Journal of Ecology, 106, 168-178. https://doi.org/10.1111/1365-2745.12831</Citation>
</Reference>
<Reference>
<Citation>Schweiger, J. M. I., Bidartondo, M. I., & Gebauer, G. (2018). Stable isotope signatures of underground seedlings reveal the organic matter gained by adult orchids from mycorrhizal fungi. Functional Ecology, 32, 870-881. https://doi.org/10.1111/1365-2435.13042</Citation>
</Reference>
<Reference>
<Citation>Selosse, M. A., Bocayuva, M. F., Kasuya, M. C. M., & Courty, P. E. (2016). Mixotrophy in mycorrhizal plants: Extracting carbon from mycorrhizal networks. In F. Martin (Ed.), Molecular mycorrhizal symbiosis (pp. 451-471). Berlin, Germany: Springer Verlag.</Citation>
</Reference>
<Reference>
<Citation>Selosse, M. A., Faccio, A., Scappaticci, G., & Bonfante, P. (2004). Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microbial Ecology, 47, 416-426. https://doi.org/10.1007/s00248-003-2034-3</Citation>
</Reference>
<Reference>
<Citation>Selosse, M. A., & Martos, F. (2014). Do chlorophyllous orchids heterotrophically use mycorrhizal fungal carbon? Trends in Plant Science, 19, 683-685. https://doi.org/10.1016/j.tplants.2014.09.005</Citation>
</Reference>
<Reference>
<Citation>Selosse, M. A., & Roy, M. (2009). Green plants that feed on fungi: Facts and questions about mixotrophy. Trends in Plant Science, 14, 64-70. https://doi.org/10.1016/j.tplants.2008.11.004</Citation>
</Reference>
<Reference>
<Citation>Selosse, M., Schneider-Maunoury, L., & Martos, F. (2018). Time to re-think fungal ecology? Fungal ecological niches are often prejudged. New Phytologist, 217, 968-972. https://doi.org/10.1111/nph.14983</Citation>
</Reference>
<Reference>
<Citation>Shefferson, R. P., Cowden, C. C., McCormick, M. K., Yukawa, T., Ogura-Tsujita, Y., & Hashimoto, T. (2010). Evolution of host breadth in broad interactions: Mycorrhizal specificity in East Asian and North American rattlesnake plantains (Goodyera spp.) and their fungal hosts. Molecular Ecology, 19, 3008-3017. https://doi.org/10.1111/j.1365-294X.2010.04693.x</Citation>
</Reference>
<Reference>
<Citation>Shefferson, R. P., Roy, M., Puttsepp, U., & Selosse, M. A. (2016). Demographic shifts related to mycoheterotrophy and their fitness impacts in two Cephalanthera species. Ecology, 97, 1452-1462.</Citation>
</Reference>
<Reference>
<Citation>Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. Cambridge, UK: Academic Press.</Citation>
</Reference>
<Reference>
<Citation>Stöckel, M., Meyer, C., & Gebauer, G. (2011). The degree of mycoheterotrophic carbon gain in green, variegated and vegetative albino individuals of Cephalanthera damasonium is related to leaf chlorophyll concentrations. New Phytologist, 189, 790-796. https://doi.org/10.1111/j.1469-8137.2010.03510.x</Citation>
</Reference>
<Reference>
<Citation>Stöckel, M., Tešitelová, T., Jersáková, J., Bidartondo, M. I., & Gebauer, G. (2014). Carbon and nitrogen gain during the growth of orchid seedlings in nature. New Phytologist, 202, 606-615. https://doi.org/10.1111/nph.12688</Citation>
</Reference>
<Reference>
<Citation>Suetsugu, K., Ohta, T., & Tayasu, I. (2018). Partial mycoheterotrophy in the leafless orchid Cymbidium macrorhizon. American Journal of Botany, 105, 1595-1600.</Citation>
</Reference>
<Reference>
<Citation>Suetsugu, K., Yamato, M., Miura, C., Yamaguchi, K., Takahashi, K., Ida, Y., … Kaminaka, H. (2017). Comparison of green and albino individuals of the partially mycoheterotrophic orchid Epipactis helleborine on molecular identities of mycorrhizal fungi, nutritional modes and gene expression in mycorrhizal roots. Molecular Ecology, 26, 1652-1669.</Citation>
</Reference>
<Reference>
<Citation>Tayasu, I., Hirasawa, R., Ogawa, N. O., Ohkouchi, N., & Yamada, K. (2011). New organic reference materials for carbon-and nitrogen-stable isotope ratio measurements provided by Center for Ecological Research, Kyoto University, and Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology. Limnology, 12, 261-266.</Citation>
</Reference>
<Reference>
<Citation>Taylor, D. L., & McCormick, M. K. (2008). Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytologist, 177, 1020-1033. https://doi.org/10.1111/j.1469-8137.2007.02320.x</Citation>
</Reference>
<Reference>
<Citation>Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE, 7, e40863. https://doi.org/10.1371/journal.pone.0040863</Citation>
</Reference>
<Reference>
<Citation>White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications. San Diego, CA: Academic Press.</Citation>
</Reference>
<Reference>
<Citation>Yagame, T., Orihara, T., Selosse, M. A., Yamato, M., & Iwase, K. (2012). Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza-forming Ceratobasidiaceae fungi. New Phytologist, 193, 178-187. https://doi.org/10.1111/j.1469-8137.2011.03896.x</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Suetsugu, Kenji" sort="Suetsugu, Kenji" uniqKey="Suetsugu K" first="Kenji" last="Suetsugu">Kenji Suetsugu</name>
</noRegion>
<name sortKey="Matsubayashi, Jun" sort="Matsubayashi, Jun" uniqKey="Matsubayashi J" first="Jun" last="Matsubayashi">Jun Matsubayashi</name>
<name sortKey="Tayasu, Ichiro" sort="Tayasu, Ichiro" uniqKey="Tayasu I" first="Ichiro" last="Tayasu">Ichiro Tayasu</name>
<name sortKey="Yamato, Masahide" sort="Yamato, Masahide" uniqKey="Yamato M" first="Masahide" last="Yamato">Masahide Yamato</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000611 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000611 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31448451
   |texte=   Comparative study of nutritional mode and mycorrhizal fungi in green and albino variants of Goodyera velutina, an orchid mainly utilizing saprotrophic rhizoctonia.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31448451" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020